如图,已知AB=AC,CF⊥AB于F,BE⊥AC于E,CF与BE交于点D,由这些条件写出所有相等的线段,并说明理由.
问题描述:
如图,已知AB=AC,CF⊥AB于F,BE⊥AC于E,CF与BE交于点D,由这些条件写出所有相等的线段,并说明理由.
答
AF=AE,CF=BE,BF=CE,BD=CD,DF=DE,
理由是:∵CF⊥AB,BE⊥AC,
∴∠BEA=∠BEC=∠CFA=∠CFB=90°,
∴在△ABE和△ACF中
∠BEA=∠CFA ∠A=∠A AB=AC
∴△ABE≌△ACF,
∴∠ABE=∠ACF,CF=BE,AE=AF,
∵AB=AC,
∴CE=BF,
∵AB=AC,
∴∠ABC=∠ACB,
∵∠ABE=∠ACF,
∴∠DBC=∠DCB,
∴BD=CD,
∵BE=CF,
∴DF=ED.