如图,梯形ABCD中,AD∥BC,EF经过梯形对角线的交点O,且EF∥AD.(1)求证:OE=OF,(2)求OEAD+OEBC的值;(3)求证:1AD+1BC=2EF.

问题描述:

如图,梯形ABCD中,AD∥BC,EF经过梯形对角线的交点O,且EF∥AD.

(1)求证:OE=OF,
(2)求

OE
AD
+
OE
BC
的值;
(3)求证:
1
AD
+
1
BC
2
EF

(1)∵EF∥AD,AD∥BC,

OE
BC
=
AO
AC
=
OD
BD
=
OF
BC

故OE=OF;
(2)∵EF∥AD,AD∥BC,
OE
AD
=
BE
AB
OE
BC
=
AE
AB

OE
AD
+
OE
BC
=
AE+BE
AB
=
AB
AB
=1;
(3)由(2)得:OE(
1
AD
+
1
BC
)=1,又OE=OF=
1
2
EF,
2OE
EF
=1,
∴OE(
1
AD
+
1
BC
)=
2OE
EF

1
AD
+
1
BC
2
EF

答案解析:(1)根据平行线分线段成比例可得
OE
BC
=
AO
AC
=
OD
BD
=
OF
BC
,从而可证得答案.
(2)将
OE
AD
转化为:
BE
AB
,将
OE
BC
转化为:
AE
AB
,从而可得出答案.
(3)将等式两边乘以OE后证等式成立即可.
考试点:平行线分线段成比例;梯形.

知识点:本题考查平行线分线段成比例定理,综合性较强,注意再运用比例关系式找准对应关系.