已知xy均为正数,设M=1/x+1/y,N=4/(x+y),试比较M和N的大小

问题描述:

已知xy均为正数,设M=1/x+1/y,N=4/(x+y),试比较M和N的大小

应用均值定理一下就出来了,很简单的1

M=1/x+1/y=(x+y)/xy
M-N=(x+y)/xy-4/(x+y)
=[(x+y)^2-4xy]/xy(x+y)
=[x^2-2xy+y^2]/xy(x+y)
=(x-y)^2/xy(x+y) x>0 y>0 (x-y)^2>=0
>=0
M>=N

果断M大
M-N=[(x-y)^2]/[xy(x+y)]>=0
当x=y时,一样大

M-N
=1/x+1/y-4/(x+y)
=(x-y)²/(xy(x+y))
≥0
当x=y,时 M=N
当x≠y,时 M>N

M=(x+y)/(xy)
N=4/(x+y)
因为M、N都是正数,则:
M/N=(x+y)²/(4xy)
=(x²+2xy+y²)/(4xy)
=(1/4)[(x/y)+(y/x)]+(1/2)
因为(x/y)+(y/x)大于等于2,则:
M/N大于等于1
即:M大于等于N

M=1/x+1/y=(x+y)/(xy)
N=4/(x+y)
M/N=(x+y)^2/(4xy)≥1/2
因此两者无法比较大小

用均值不等式:1/x+1/y>=2/(根号xy)>=2*2/(x+y)则M>=N当且仅当x=y取等号