如何证明cot(1/2A)-tan(1/2A)=2cot(A)
问题描述:
如何证明cot(1/2A)-tan(1/2A)=2cot(A)
答
左边=cos(A/2)/sin(A/2)-sin(A/2)/cos(A/2)
=[cos²(A/2)-sin²(A/2)]/sin(A/2)cos(A/2)
=2[cos²(A/2)-sin²(A/2)]/[2sin(A/2)cos(A/2)]
=2cosA/sinA
=2cotA=右边
命题得证