函数y=loga(x-2)+2(a>0,a≠1)的图象恒过定点A,且点A在曲线y2=mx+n上,其中m,n>0,则4/m+3/n的最小值为_.
问题描述:
函数y=loga(x-2)+2(a>0,a≠1)的图象恒过定点A,且点A在曲线y2=mx+n上,其中m,n>0,则
+4 m
的最小值为______. 3 n
答
由对数函数的性质可得函数y=loga(x-2)+2恒过定点A(3,2)∵点A在曲线y2=mx+n上,∴3m+n=4,m>0,n>0∴4m+3n=(4m+3n)(3m+ n)×14=14(15+4nm+9mn)≥154+14×24nm•9mn=274,当且仅当4nm=9mn取等号,故答...