求f(x)=2x^3-3x^2的单调区间和极值

问题描述:

求f(x)=2x^3-3x^2的单调区间和极值

答:
f(x)=2x^3-3x^2
求导:
f'(x)=6x^2-6x
再次求导:
f''(x)=12x-6
解f'(x)=0得:x1=0,x2=1
x1,f'(x)>0,f(x)单调递增
0所以:
x=0取得极大值f(0)=0
x=1取得极小值f(1)=2-3=-1
单调递增区间(-∞,0]或者[1,+∞)
单调递减区间[0,1]