已知数列{an}的首项a1=1,且点An(an,an+1)在函数y=x/(x+1)的图像上.(1)求数列{an}的通项公式;(2)...已知数列{an}的首项a1=1,且点An(an,an+1)在函数y=x/(x+1)的图像上.(1)求数列{an}的通项公式;(2)若数列{bn}满足an乘bn=2^n,求数列{bn}的前n项和Sn的值.

问题描述:

已知数列{an}的首项a1=1,且点An(an,an+1)在函数y=x/(x+1)的图像上.(1)求数列{an}的通项公式;(2)...
已知数列{an}的首项a1=1,且点An(an,an+1)在函数y=x/(x+1)的图像上.(1)求数列{an}的通项公式;(2)若数列{bn}满足an乘bn=2^n,求数列{bn}的前n项和Sn的值.

(1)因为点An在函数y=x/(x+1),所以an+1=an/(an+1),等式两边同时取倒数得1/an+1=1+1/an,所以,1/an是以1为首项,1为等差的等差数列。1/an=n,an=1/n.
(2)因为an*bn=2^n,所以bn=3^n,三次方的求和公式好像很复杂

2.bn=2^n/an=n*2^n
Sn=1×2+2×2² +3×2³ + ...+(n-1)×2^(n-1) + n×2^n
2Sn= 1×2² +2×2³ + ...+(n-2)×2^(n-1) + (n-1)×2^n+n×2^(n+1)
后面还有 两式减一下.