已知等差数列{an}的前n项和为Sn,a2是a1与a4的等比中项,S3=48,求{an}的通项公式,急!
问题描述:
已知等差数列{an}的前n项和为Sn,a2是a1与a4的等比中项,S3=48,求{an}的通项公式,急!
答
设等差数列公差为d ;
a(2)^2=a(1)a(4)
S(3)=48=a(1)+a(2)+a(3)=3a(2)
a(2)=48/3=16 ;
a(1)a(4)=a(2)^2=256=[a(2)-d][a(2)+2d]=(16-d)(16+2d)
解得 d=0 或 d=8 ;
当d=0,a(n)=16
当d=8,a(1)=a(2)-d=8,a(n)=8n