如图,四边形ABCD是正方形,PB⊥平面ABCD,MA⊥平面ABCD,PB=AB=2MA.求证:(1)平面AMD∥平面BPC;(2)平面PMD⊥平面PBD.
问题描述:
如图,四边形ABCD是正方形,PB⊥平面ABCD,MA⊥平面ABCD,PB=AB=2MA.求证:
(1)平面AMD∥平面BPC;
(2)平面PMD⊥平面PBD.
答
答案解析:(1)平面AMD内的直线MA,平行平面BPC内的直线PB,即可证明平面AMD∥平面BPC;
(2))连接AC,设AC∩BD=E,取PD中点F,连接EF,MF.证明MF⊥平面PBD,从而证明平面PMD⊥平面PBD.
考试点:平面与平面垂直的判定;平面与平面平行的判定.
知识点:本题考查平面与平面垂直的判定,平面与平面平行的判定,考查空间想象能力,逻辑思维能力,是中档题.