直线y=x-1被双曲线2x^-y^=3截得的弦长是
问题描述:
直线y=x-1被双曲线2x^-y^=3截得的弦长是
答
当n≥2时
an
=Sn-S(n-1)
=(3n²+n+1)-[3(n-1)²+(n-1)+1]
=3n²+n+1-[3(n²-2n+1)+n-1+1]
=3n²+n+1-(3n²-5n+3)
=6n-2
当n=1时,a1=S1=3+1+1=5
所以数列{an}的通项是
an=5,当n=1时
an=6n-2,当n≥2时
答
代入
2x²-x²+2x-1=3
x²+2x-4=0
x1+x2=-2
x1x2=-4
(x1-x2)²=(x1+x2)²-4x1x2=20
y=x-1
(y1-y2)²=(x1-1-x2+1)²=20
所以弦长=√[(x1-x2)²+(y1-y2)²]=2√10