如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若CB=2,CE=4,求AE的长.
问题描述:
如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.
(1)求证:CD是⊙O的切线;
(2)若CB=2,CE=4,求AE的长.
答
(1)证明:连接OE,∵AE平分∠BAF,∴∠BAE=∠DAE.(1分)∵OE=OA,∴∠BAE=∠OEA.(2分)∴∠OEA=∠DAE.∴OE∥AD.(3分)∵AD⊥CD,∴OE⊥CD.∴CD是⊙O的切线.(4分)(2)设r是⊙O的半径,在Rt△CEO中,CO2...
答案解析:(1)连接OE,由角平分线的性质,结合平行线的性质;易证得OE⊥CD;故可得CD是⊙O的切线.(2)设r是⊙O的半径,在Rt△CEO中,CO2=OE2+CE2,进而有OE∥AD可得△CEO∽△CDA,可得比例关系式,代入数据可得答案.
考试点:切线的判定;角平分线的性质;相似三角形的判定与性质.
知识点:本题考查常见的几何题型,包括切线的判定及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.