已知直角坐标平面内点Q(2,0)和圆O:x^2+y^2=1,动点M到圆O的切线长与MQ的绝对值的比等于常数λ(λ>0)求点M的轨迹方程,说明它表示什么曲线

问题描述:

已知直角坐标平面内点Q(2,0)和圆O:x^2+y^2=1,动点M到圆O的切线长与MQ的绝对值的比等于常数λ(λ>0)求
点M的轨迹方程,说明它表示什么曲线

设M(x,y),则MO²=x²+y²,M到⊙O的切线MN的长|MN|=√(x²+y²-1)
依题意 √(x²+y²-1)=λ√[(x-2)²+y²]
两边平方并整理得
(1-λ²)x²+4λ²x+(1-λ²)y²=1+4λ² ①
已知λ>0,就此讨论。
若 λ=1,则①化为 x=5/4 是一条竖直直线
若 λ≠1,则因①中x²项与y²项系数相等,①中没有交叉项并且右方>0知M的轨迹是一个圆。

设点M坐标为(x,y)
圆C半径为1,圆心C坐标为(0,0)
过点M作圆C的切线,切点为P
则|MP|²=|MC|²-|CP|²=x²+y²-1
显然,x²+y²≥1
而|MQ|²=(x-2)²+y²
∵|MP|/|MQ|=a
∴|MP|=a|MQ|
|MP|²=a²|MQ|²
x²+y²-1=a²[(x-2)²+y²]
x²+y²-1=a²x²-4a²x+4a²+a²y²
(a²-1)x²-4a²x+(a²-1)y²+4a²+1=0
∴点M的轨迹方程就是:(a²-1)x²-4a²x+(a²-1)y²+4a²+1=0 (x²+y²≥1)