(理科)已知圆C:x2+y2=1和点Q(2,0),动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0),求动点M的轨迹方程,并说明它表示什么曲线?

问题描述:

(理科)已知圆C:x2+y2=1和点Q(2,0),动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0),求动点M的轨迹方程,并说明它表示什么曲线?

如图,设MN切圆于N,则动点M组成的集合是P={M||MN|=λ|MQ|},式中常数λ>0.因为圆的半径|ON|=1,所以|MN|2=|MO|2-|ON|2=|MO|2-1.
设点M的坐标为(x,y),则

x2+y2−1
(x−2)2+y2

整理得(λ2-1)(x2+y2)-4λ2x+(1+4λ2)=0.
经检验,坐标适合这个方程的点都属于集合P.故这个方程为所求的轨迹方程.
当λ=1时,方程化为x=
5
4
,它表示一条直线,该直线与x轴垂直且交x轴于点(
5
4
,0),
当λ≠1时,方程化为(x-
2λ2
λ2−1
2+y2=
1+3λ2
(λ2−1)2
它表示圆,该圆圆心的坐标为(
2λ2
λ2−1
,0),半径为
1+3λ2
|λ2−1|