如图所示,四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA⊥底面ABCD,侧面PBC内有BE⊥PC于E,且BE=63a,试在AB上找一点F,使EF∥平面PAD.
问题描述:
如图所示,四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA⊥底面ABCD,侧面PBC内有BE⊥PC于E,且BE=
a,试在AB上找一点F,使EF∥平面PAD.
6
3
答
在平面PCD内,过E作EG∥CD交PD于G,连接AG,在AB上取点F,使AF=EG,则F即为所求作的点.∵EG∥CD∥AF,EG=AF,∴四边形FEGA为平行四边形,∴FE∥AG.又AG⊂平面PAD,FE⊄平面PAD,∴EF∥平面PAD.又在Rt△BCE中,CE...
答案解析:画出图形,过E作EG∥CD交PD于G,连接AG,在AB上取点F,使AF=EG,要证明EF∥平面PAD,只需证明FE∥AG即可;然后确定F的位置.
考试点:直线与平面平行的判定.
知识点:本题考查直线与平面平行的判定,考查学生的逻辑思维能力,是中档题.