如图所示,四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA⊥底面ABCD,侧面PBC内有BE⊥PC于E,且BE=63a,试在AB上找一点F,使EF∥平面PAD.
问题描述:
如图所示,四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA⊥底面ABCD,侧面PBC内有BE⊥PC于E,且BE=
a,试在AB上找一点F,使EF∥平面PAD.
6
3
答
在平面PCD内,过E作EG∥CD交PD于G,连接AG,
在AB上取点F,使AF=EG,则F即为所求作的点.
∵EG∥CD∥AF,EG=AF,
∴四边形FEGA为平行四边形,
∴FE∥AG.
又AG⊂平面PAD,FE⊄平面PAD,
∴EF∥平面PAD.
又在Rt△BCE中,
CE=
BC2-BE2
=
=
a2 3
a.
3
3
四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA⊥底面ABCD,
所以△PBC是直接三角形.
在Rt△PBC中,BC2=CE•CP
∴CP=
=a2
a
3
3
a.又
3
=EG CD
,PE PC
∴EG=
•CD=PE PC
a,2 3
∴AF=EG=
a.2 3
∴点F为AB的一个三等分点.