已知S、A、B、C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=2,则球O的表面积等于______.
问题描述:
已知S、A、B、C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=
,则球O的表面积等于______.
2
答
知识点:本题考查的知识点是球内接多面体,球的表面积公式,其中根据已知条件求出球O的直径(半径),是解答本题的关键.
∵SA⊥平面ABC,AB⊥BC,
∴四面体S-ABC的外接球半径等于以长宽高分别SA,AB,BC三边长的长方体的外接球的半径
∵SA=AB=1,BC=
,
2
∴2R=
=2
SA2+AB2+BC2
∴球O的表面积S=4•πR2=4π
故答案为:4π
答案解析:由已知中S、A、B、C是球O表面上的点,SA⊥平面ABC,AB⊥BC,易S、A、B、C四点均为长宽高分别SA,AB,BC三边长的长方体的顶点,由长方体外接球的直径等于长方体对角线,可得球O的直径(半径),代入球的表面积公式即可得到答案.
考试点:球内接多面体;球的体积和表面积.
知识点:本题考查的知识点是球内接多面体,球的表面积公式,其中根据已知条件求出球O的直径(半径),是解答本题的关键.