等腰△ABC中,AB=AC,D为BC上的一动点,DE∥AC,DF∥AB,分别交AB于E,AC于F,则DE+DF是否随D点变化而变化?请说明理由.
问题描述:
等腰△ABC中,AB=AC,D为BC上的一动点,DE∥AC,DF∥AB,分别交AB于E,AC于F,则DE+DF是否随D点变化而变化?请说明理由.
答
不变化.理由如下:
∵DE∥AC,DF∥AB
∴四边形AEDF为平行四边形
∴DF=AE(平行四边形的对边相等)
又∵AB=AC
∴∠B=∠C(等边对等角)
∵DE∥AC
∴∠EDB=∠C
∴∠EDB=∠B(等量代换)
∴DE=EB(等角对等边)
∴DE+DF=AE+EB=AB.
答案解析:根据平行的性质可知四边形AEDF为平行四边形,利用等量代换可知∠EDB=∠B,所以DE=EB,利用等量代换可知DE+DF=AE+EB=AB.故不变.
考试点:等腰三角形的性质;平行四边形的判定与性质.
知识点:主要考查了等腰三角形的性质和平行四边形的性质.要掌握等腰三角形的性质:两个底角相等,三角形内角和为180度.会熟练运用等边对等角或等角对等边.