如果实数x y 满足x2+y2=1,那么(1-xy)(1+xy)的最小值和最大值

问题描述:

如果实数x y 满足x2+y2=1,那么(1-xy)(1+xy)的最小值和最大值

0(1+xy)(1-xy)
=1-x^2y^2
=1-x^2(1-x^2)
=1-x^2+x^4
=(x^2-1/2)^2+3/4
最小值为 x^2=1/2时 达到为3/4
最大值为 x^2=1或0时达到 为1

观察到sin²θ+cos²θ=1,则可做三角代换
令x=sinθ,y=cosθ
(1-xy)(1+xy)
=1-(xy)²
=1-(sinθcosθ)²
=1-(sin2θ/2)²
=1-sin2²θ/4
当sin2θ=0时,有最大值1,当sin2θ=±1时,有最小值3/4
(1-xy)(1+xy)的最大值是1,最小值是3/4