答
(1)证明:∵AB是直径,
∴∠BCA=90°,
而等腰直角三角形DCE中∠DCE是直角,
∴∠ACB=∠DCE=90°,
∴∠BCA+∠DCE=90°+90°=180°,
∴B、C、E三点共线;
(2)连接BD,AE,ON,延长BD交AE于F,如图1,
∵CB=CA,CD=CE,
∴Rt△BCD≌Rt△ACE,
∴BD=AE,∠EBD=∠CAE,
∴∠CAE+∠ADF=∠CBD+∠BDC=90°,即BF⊥AE,
又∵M是线段BE的中点,N是线段AD的中点,而O为AB的中点,
∴ON=BD,OM=AE,ON∥BD,AE∥OM;
∴ON=OM,ON⊥OM,即△ONM为等腰直角三角形,
∴MN=OM;
(3)成立.
理由如下:如图2,连接BD1,AE1,ON1,
∵∠ACB-∠ACD1=∠D1CE1-∠ACD1,
∴∠BCD1=∠ACE1,
又∵CB=CA,CD1=CE1,
∴△BCD1≌△ACE1,
与(2)同理可证BD1⊥AE1,△ON1M1为等腰直角三角形,
从而有M1N1=OM1.
答案解析:(1)根据直径所对的圆周角为直角得到∠BCA=90°,∠DCE是直角,即可得到∠BCA+∠DCE=90°+90°=180°;
(2)连接BD,AE,ON,延长BD交AE于F,先证明Rt△BCD≌Rt△ACE,得到BD=AE,∠EBD=∠CAE,则∠CAE+∠ADF=∠CBD+∠BDC=90°,即BD⊥AE,再利用三角形的中位线的性质得到ON=BD,OM=AE,ON∥BD,AE∥OM,于是有ON=OM,ON⊥OM,即△ONM为等腰直角三角形,即可得到结论;
(3)证明的方法和(2)一样.
考试点:圆周角定理;全等三角形的判定与性质;等腰直角三角形;三角形中位线定理;旋转的性质.
知识点:本题考查了直径所对的圆周角为直角和三角形中位线的性质;也考查了三角形全等的判定与性质、等腰直角三角形的性质以及旋转的性质.