如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;(3)若BC=DE=2,在(2)的旋转过程中,求线段AE长的最大值和最小值.

问题描述:

如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A

如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.
(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;
(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;
(3)若BC=DE=2,在(2)的旋转过程中,求线段AE长的最大值和最小值.


(1)BG=AE,易得BD=DA,GD=DA,∠GDB=∠EDA;故可得Rt△BDG≌Rt△ADE;故BG=AE;(2)成立:连接AD,∵Rt△BAC中,D为斜边BC的中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°,∵EFGD为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠A...