己知圆锥的底面半径是4cm,母线长为12cm,C为母线PB的中点,求从A到C在圆锥的侧面上的最短距离.

问题描述:

己知圆锥的底面半径是4cm,母线长为12cm,C为母线PB的中点,求从A到C在圆锥的侧面上的最短距离.

圆锥的底面周长是8π,则8π=nπ×12180,∴n=120°,即圆锥侧面展开图的圆心角是120度.∴∠APB=60°,∵PA=PB,∴△PAB是等边三角形,∵C是PB中点,∴AC⊥PB,∴∠ACP=90度.∵在圆锥侧面展开图中AP=12,PC=6,∴...
答案解析:最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.需先算出圆锥侧面展开图的扇形半径.看如何构成一个直角三角形,然后根据勾股定理进行计算.
考试点:圆锥的计算;线段的性质:两点之间线段最短;勾股定理;弧长的计算.
知识点:本题考查了圆锥的计算,需注意最短距离的问题最后都要转化为平面上两点间的距离的问题.