已知点P是圆x2+y2=4上一动点,定点Q(4,0). (1)求线段PQ中点的轨迹方程; (2)设∠POQ的平分线交PQ于R,求R点的轨迹方程.

问题描述:

已知点P是圆x2+y2=4上一动点,定点Q(4,0).
(1)求线段PQ中点的轨迹方程;
(2)设∠POQ的平分线交PQ于R,求R点的轨迹方程.

(1)设PQ中点M(x,y),则P(2x-4,2y),代入圆的方程得(x-2)2+y2=1.
(2)设R(x,y),由

|PR|
|RQ|
=
|OP|
|OQ|
=
1
2

设P(m,n),则有m=
3x−4
2
,n=
3y
2

代入x2+y2=4中,得
(x-
4
3
2+y2=
16
9
(y≠0).