求证:两条直线被第三条直线所截,如果同旁内角的角平分线互相垂直,那么这两条直线互相平行.

问题描述:

求证:两条直线被第三条直线所截,如果同旁内角的角平分线互相垂直,那么这两条直线互相平行.

如图,已知OP,MN分别平分∠BOM,∠OMD,OP,MN交于G点,MN⊥OP,
求证:AB∥CD.
证明:∵MN⊥OP,
∴∠3=90°,
∴∠1+∠2=180°-90°=90°,
∵MN、OP分别是平分∠BOM,∠OMD,
∴2∠1+2∠2=180°,
即∠BOM+∠DMO=180°,
∴AB∥CD.