比较1/n*(n+1)与1/(2^n)的大小
问题描述:
比较1/n*(n+1)与1/(2^n)的大小
答
n=1时,1/[n(n+1)]=1/2^n=1/2
n=2时,1/[n(n+1)]=1/6 n=3时,1/[n(n+1)]=1/12 n=4时,1/[n(n+1)]=1/20 n=5时,1/[n(n+1)]=1/30 > 1/2^n=1/32
n≥5时,1/[n(n+1)] > 1/2^n
因为2^n=C(n,0)+C(n,1)+...+C(n,n)>1+n+n(n-1)/2+n(n-1)(n-1)/6≥1+n+(7/6)n(n-1)
=1+n²+n(n-1)/6
≥1+n²+(n-1)
=n(n+1)
所以n≥5时,1/[n(n+1)] > 1/2^n