设数列{an}的前n项和为Sn,且Sn=4an-p,其中p是不为零的常数. (1)证明:数列{an}是等比数列; (2)当p=3时,若数列{bn}满足bn+1=bn+an(n∈N*),b1=2,求数列{bn}的通项公式.

问题描述:

设数列{an}的前n项和为Sn,且Sn=4an-p,其中p是不为零的常数.
(1)证明:数列{an}是等比数列;
(2)当p=3时,若数列{bn}满足bn+1=bn+an(n∈N*),b1=2,求数列{bn}的通项公式.

证明:(1)证:因为Sn=4an-p(n∈N*),则Sn-1=4an-1-p(n∈N*,n≥2),所以当n≥2时,an=Sn-Sn-1=4an-4an-1,整理得an=43an−1.(5分)由Sn=4an-p,令n=1,得a1=4a1-p,解得a1=p3.所以an是首项为p3,公比为43...