|2sin^2 x-1|=cosx

问题描述:

|2sin^2 x-1|=cosx
1.如题
2.设关于x的方程1-cosx+sinx=t在x属于[0,∏]上有且只有一个实数解,实数t的取值范围是
A[0,2]B[0,2)C[0,2]U{3}D[0,2)U{1+√2}
急,好的有奖

选D,绝对值[2(sinx)^2-1]=cosx,0<=(sinx)^2<=1,所以-1<=2(sinx)^2-1<=1,当0<2sinx
^2-1<=1时,去绝对值2sinx^2-1=cosx,即2cosx^2-1+cosx=0,求出cosx,把它代入1+sinx-cosx=t中,很容易得出0<=t< 2,t-1+cosx=sinx,两边平方,2(cosx)^2+(2t-2)cosx+t^2-2t=0,x属于[0,派]上有且只有一个实根,所以(2t-2)^2-4*2(t^2-2t)=0,解得t=1+根号2