对于定义域为R的函数f(x),若存在非零实数x0,使函数f(x)在(-∞,x0)和(x0,+∞)上均有零点,则称x0为函数f(x)的一个“界点”.则下列函数中,不存在“界点”的是( ) A.f(
问题描述:
对于定义域为R的函数f(x),若存在非零实数x0,使函数f(x)在(-∞,x0)和(x0,+∞)上均有零点,则称x0为函数f(x)的一个“界点”.则下列函数中,不存在“界点”的是( )
A. f(x)=x2+bx-1(b∈R)
B. f(x)=2x-x2
C. f(x)=sinx-x
D. f(x)=2-|x-1|
答
根据题意,有
A.f(x)=x2+bx-1(b∈R),判别式恒大于0,有界点.
B.f(x)=2x-x2由于x=2,x=4相等,因此可知存在界点成立,落在(2,4)之间即可.
C.f(x)=sinx-x,因为只有一个交点不会存在界点.
D.f(x)=2-|x-1|,存在界点在对称轴两侧各有一个.
故选:C.