若公比为c的等比数列{an}的首项为a1=1且满足an=an-1+an-2/2 (1)求c (2

问题描述:

若公比为c的等比数列{an}的首项为a1=1且满足an=an-1+an-2/2 (1)求c (2
若公比为c的等比数列{an}的首项为a1=1且满足an=an-1+an-2/2
(1)求c
(2)求数列{nan}的前n项和sn

(1)a1=1且满足an=an-1+an-2/2
得:c^(n-1)=c^(n-2)+c^(n-3)/2
两边同除以c^(n-3)得:c2=c+1/2
解之得:c1=(1+√3)/2 c2=(1-√3)/2
(2)sn=1+2c+3c^2+……+nc^(n-1)
csn=c+2c^2+3c^3+……+nc^n
两式相减得:
(1-c)sn=1+c+c^2+c^3+……+c^(n-1)-nc^n
(1-c)sn=(1-c^n)/(1-c)-nc^n
sn=(1-c^n)/(1-c)^2-nc^n/(1-c)