a>0,b>0,求当n趋于无穷大时(a^1/n+b^1/n)^n/2^n的极限

问题描述:

a>0,b>0,求当n趋于无穷大时(a^1/n+b^1/n)^n/2^n的极限

原式=lim{n->∞}{[1+(a^{1/n}+b^{1/n}-2)/2]^{1/(a^{1/n}+b^{1/n}-2)}}^{n/(a^{1/n}+b^{1/n}-2)}
=e^(lim{n->∞}{(a^{1/n}+b^{1/n}-2)/{1/n}})=e^(lim{n->∞}{(a^{1/n}-1)/{1/n}+(b^{1/n}-1)/{1/n}})
=e^{lna+lnb}=e^{lnab}=ab(ab)^1/2原式=lim{n->∞}{[1+(a^{1/n}+b^{1/n}-2)/2]^{2/(a^{1/n}+b^{1/n}-2)}}^{n(a^{1/n}+b^{1/n}-2)/2}=e^(lim{n->∞}{½(a^{1/n}+b^{1/n}-2)/{1/n}})=e^(lim{n->∞}{½(a^{1/n}-1)/{1/n}+(b^{1/n}-1)/{1/n}})=e^{½(lna+lnb)}=e^{½lnab}=√ab