如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB上一点,作∠CDE=∠A,过点C作CE⊥CD交DE于E,连接BE. (1)求证:CE/CB=CD/CA; (2)求证:AB⊥BE.
问题描述:
如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB上一点,作∠CDE=∠A,过点C作CE⊥CD交DE于E,连接BE.
(1)求证:
=CE CB
;CD CA
(2)求证:AB⊥BE.
答
证明:(1)∵CE⊥CD,
∴∠DCE=∠ACB=90°
又∵∠CDE=∠A
∴△DCE∽△ACB,
∴
=CE CB
;CD CA
(2)∵
=CE CB
,CD CA
∴
=CE CD
,CB CA
∵∠DCE=∠ACB=90°,
∴∠BCE=∠ACD,
∴△BCE∽△ACD,
∴∠CBE=∠A,
∵∠A+∠ABC=90°,
∴∠CBE+∠ABC=90°,
∴∠ABE=90°,
∴AB⊥BE.