一道关于求高中数列前N项和的题目
问题描述:
一道关于求高中数列前N项和的题目
通项公式为 1/ n(n+2)的数列,求其前N项和.我知道 可以裂项相消.原式可以化成1/2 ( 1/ n - 1/ n+2) 但是接下来怎么求呢 知道有点麻烦,
答
1/ n(n+2)=(1/2)[1/n-1/(n+2)]
1/(1*3)+1/(2*4)+1/(3*5)+.+1/[n*(n+2)]
=(1/2)[1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+...+1/(n-1)-1/(n+1)+1/n-1/(n+2)]
=(1/2)[1+1/2-1/(n+1)-1/(n+2)]
=(3n^2+5n)/(4n^2+12n+8)