设函数z=(x,y)由方程x^2+z^2=2ye^z所确定,求dz
问题描述:
设函数z=(x,y)由方程x^2+z^2=2ye^z所确定,求dz
答
两边求微分的 2xdx+2zdz=2e^zdy+2ye^zdz
解得 dz=(2e^zdy-2xdx)/(2z-2ye^z)=(e^zdy-xdx)/(z-ye^z)