如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,点P是直径MN上一个动点,则PA+PB的最小值为(  ) A.22 B.2 C.1 D.2

问题描述:

如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,点P是直径MN上一个动点,则PA+PB的最小值为(  )
A. 2

2

B.
2

C. 1
D. 2

过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,
连接OB,OA′,AA′,
∵AA′关于直线MN对称,

AN
=
A′N

∵∠AMN=30°,
∴∠A′ON=60°,∠BON=30°,
∴∠A′OB=90°,
在Rt△A′OB中,OB=OA′=1,
∴A′B=
OB2+OA2
=
12+12
=
2
,即PA+PB的最小值
2

故选B.