某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减库存,商场决定采取适当的减价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多销售出2件,

问题描述:

某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减库存,商场决定采取适当的减价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多销售出2件,
(2)每件衬衫降价多少元时,商场平均每天盈利最多
不太懂,怎么求最大盈利?

某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件; (1)若商场平均每天要赢利1 200元,每件衬衫应降价多少元; (2)每件衬衫降价多少元时,商场平均每天赢利最多. 考点:一元二次方程的应用. 专题:销售问题. 分析:此题属于经营问题,若设每件衬衫应降价x元,则每件所得利润为(40-x)元,但每天多售出2x件即售出件数为(20+2x)件,因此每天赢利为(40-x)(20+2x)元,进而可根据题意列出方程求解. (1)设每件衬衫应降价x元,根据题意得(40-x)(20+2x)=1200,整理得2x2-60x+400=0 解得x1=20,x2=10. 因为要尽量减少库存,在获利相同的条件下,降价越多,销售越快,故每件衬衫应降20元. 答:每件衬衫应降价20元. (2)设商场平均每天赢利y元,则 y=(20+2x)(40-x) =-2x2+60x+800 =-2(x2-30x-400)=-2[(x-15)2-625] =-2(x-15)2+1250. ∴当x=15时,y取最大值,最大值为1250. 答:每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1250元.