证明:若(f(x),g(x))=1,则,(f(x)g(x),f(x)+g(x))=1
问题描述:
证明:若(f(x),g(x))=1,则,(f(x)g(x),f(x)+g(x))=1
答
设(f(x)g(x),f(x)+g(x))=d(x)所以d(x) | f(x)g(x),d(x) | f(x)+g(x)因为(f(x),g(x))=1所以由d(x) | f(x)g(x),得到d(x) | f(x)或d(x) | g(x)不妨设d(x) | f(x)由d(x) | f(x)+g(x)得到d(x) | g(x)所以d(x) | (f(x),g(x...设c≠0,证明:若f(x)=f(x-c),则f(x)只能是常数