设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)^2+(y-1)^2=1相切,则m+n的取值范围是?
问题描述:
设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)^2+(y-1)^2=1相切,则m+n的取值范围是?
这里用基本不等式(m+n)^2/4>=mn不用m、n属于R+么
答
因为相切 所以由距离公式得m+1+n+1/根号下(m+1)²+(n+1)²=1
化简得2mn=2(m+n)+2
因为有基本不等式 2mn≤(m+n)²/2
所以2(m+n)+2≤(m+n)²/2
所以m+n∈(-∞,2-2根号2)∪(2+2根号2,+∞)