如何求出数列an等于n分之一的前n项和?

问题描述:

如何求出数列an等于n分之一的前n项和?

Sn=1+1/2+1/3+...+1/n是调和级数,也是一个发散级数,它没有通项公式.但它可以用一些公式去逼近它的和,如有:1+1/2+1/3+...+1/n>ln(n+1),当n很大时,它们之间的差就非常小,这时就可以近似用ln(n+1)来代替.由x>ln(x+1)(x>0),这可以利用导数证明,略.然后取x=1/n,所以1/n>ln(1/n+1)=ln(n+1)-lnn,然后由1/n>ln(n+1)-lnn进行累加,就可得1+1/2+1/3+...+1/n>ln(n+1).
建议你去查查调和级数,欧拉常数等知识,你会对此有更深认识.