已知点A在抛物线y^2=4x上,过点A作圆C:(x-1)^2+y^2=1的直线AP,AQ交y轴于M,N.P,Q是切点.

问题描述:

已知点A在抛物线y^2=4x上,过点A作圆C:(x-1)^2+y^2=1的直线AP,AQ交y轴于M,N.P,Q是切点.
1.若A(4,4)求PQ直线方程
2.若向量AM乘向量AN=-2,求点A坐标

(1)因为C(1,0),P(4,4),所以以CP为直径的圆的圆心为(5/2,2),半径为5/2,所以圆方程为(x-5/2)^2+(y-2)^2=25/4,与给定的圆方程做差可得PQ的方程为:3x+4y-4=0.(2)设A(n^2/4,n),则过A的直线方程为:y-n=k(x-n^2/4...