在等差数列{an}中,a1=-2012,其前n项和为Sn,若S1212−S1010=2,则S2012的值等于(  ) A.-2011 B.-2012 C.-2010 D.-2013

问题描述:

在等差数列{an}中,a1=-2012,其前n项和为Sn,若

S12
12
S10
10
=2,则S2012的值等于(  )
A. -2011
B. -2012
C. -2010
D. -2013

∵数列{an}为等差数列,设其公差为d,则其前n项和为Sn=na1+

n(n−1)
2
d,
Sn
n
=a1+
(n−1)
2
d

Sn+1
n+1
-
Sn
n
=
d
2

∴{
Sn
n
}为公差是
d
2
的等差数列,
S12
12
-
S10
10
=2×
d
2
=d,
S12
12
-
S10
10
=2,
∴d=2.
∵数列{an}为等差数列,a1=-2 012,
∴S2012=2012a1+
2012×(2012−1)
2
d

=2012×(-2012)+
2012×(2012−1)
2
×2
=-2012.
故选B.