如图,AB是⊙O的直径,弦CD⊥AB于点E,过点B作⊙O的切线,交AC的延长线于点F.已知OA=3,AE=2, (1)求CD的长; (2)求BF的长.
问题描述:
如图,AB是⊙O的直径,弦CD⊥AB于点E,过点B作⊙O的切线,交AC的延长线于点F.已知OA=3,AE=2,
(1)求CD的长;
(2)求BF的长.
答
(1)如图,连接OC,
∵AB是直径,弦CD⊥AB,
∴CE=DE
在直角△OCE中,OC2=OE2+CE2
32=(3-2)2+CE2
得:CE=2
,
2
∴CD=4
.
2
(2)∵BF切⊙O于点B,
∴∠ABF=90°=∠AEC.
又∵∠CAE=∠FAB(公共角),
∴△ACE∽△AFB
∴
=AE AB
CE BF
即:
=2 6
2
2
BF
∴BF=6
.
2