求曲线(x^2+y^2)^2=a^2(x^2-y^2)围成的有界闭区域面积

问题描述:

求曲线(x^2+y^2)^2=a^2(x^2-y^2)围成的有界闭区域面积

设t²=x²-y²,则x²+y²=t²+2y²,代入原方程得:(t²+2y²)²=a²t²不妨假设a>=0,上式化简为:t²+2y²=at,所以可得:y²=(at-t²)/2,x²=...