平行四边形ABCD平行四边形ABEF共边AB,M、N分别是对角线AC、BF上,且AM:AC=FN:FB 求证MN//平面ADF
问题描述:
平行四边形ABCD平行四边形ABEF共边AB,M、N分别是对角线AC、BF上,且AM:AC=FN:FB 求证MN//平面ADF
答
AB上取点G,令AG:GB=AM:AC=FN:FB
则可得到,NG//AF,MG//AD,
所以平面NGM//平面ADF
M属于平面MNG
所以MN//平面ADF