设数列an的前n项为sn,且sn=2n^2+4n,设数列bn的前n项和为tn且bn=2/an(2n-1)
问题描述:
设数列an的前n项为sn,且sn=2n^2+4n,设数列bn的前n项和为tn且bn=2/an(2n-1)
(1)求tn
答
当n≥2时,an=Sn-S(n-1)=2n²+4n-4(n-1)²-4(n-1)=4n+2当n=1时,a1=S1=6适合an=4n+2所以数列{an}通项公式是an=4n+2于是bn=2/an(2n-1)=1/(2n-1)(2n+1)=(1/2)[1/(2n-1)-1/(2n+1)]所以Tn=b1+b2+b3+.+bn=(1/2)[1-1...