设△ABC是锐角三角形,角A,B,C所对的边分别是a,b,c,并且cos2A=cos2B−sin(π3+B)cos(π6+B). (1)求角A的值; (2)若△ABC的面积为63,求边a的最小值.
问题描述:
设△ABC是锐角三角形,角A,B,C所对的边分别是a,b,c,并且cos2A=cos2B−sin(
+B)cos(π 3
+B).π 6
(1)求角A的值;
(2)若△ABC的面积为6
,求边a的最小值.
3
答
(1)由 cos2A=cos2B−sin(π3+B)cos(π6+B)可得 cos2A=cos2B-(sinπ3cosB+cosπ3sinB)•(cosπ6cosB+sinπ6sinB)=cos2B-(34cos2B-14sin2B)=14cos2B+14sin2B=14,可得cosA=±12,再由△ABC是锐角三角形可得A=...