已知等差数列{an},若a2+a4+…+a2n=a3a6,a1+a3+…+a2n-1=a3a5,且S2n=100,则公差=_.

问题描述:

已知等差数列{an},若a2+a4+…+a2n=a3a6,a1+a3+…+a2n-1=a3a5,且S2n=100,则公差=______.

若a2+a4+…+a2n=a3a6,①a1+a3+…+a2n-1=a3a5,②②-①得nd=a3d(1)若d=0,显然an>0,则a3•a6=a12=50,所以a1=50,S2n=100=2n•a1,得n不为正整数,矛盾(2)若d≠0,则n=a3,所以n•(a5+a6)=100又S2n=100=n•...