矩阵证明题 设A的平方=A,证明E+A可逆 并求出

问题描述:

矩阵证明题 设A的平方=A,证明E+A可逆 并求出
A^2=A
A^2-A-2E=-2E
(A-2E)(A+E)=-2E
[(2E-A)/2](E+A)=E
所以E+A的逆为(2E-A)/2
A^2-A-2E=-2E
(A-2E)(A+E)=-2E
这步怎么想出来的
怎么凑啊 关键是

拿你这题来说
等式右边凑出一个k*E
等式左边凑出一个(A+E)(A+mE)
既(A+E)(A+mE)=kE
然后拆开:A^2+(m+1)A+mE-kE=0
与A^2-A=0比较系数得
m+1=-1
m-k=0
求出m=-2 k=-2即可