L为取正向的圆周,x^2+y^2=R^2,求曲线积分∮xy^2dy-x^2ydx的值(答案是πR^4/2)

问题描述:

L为取正向的圆周,x^2+y^2=R^2,求曲线积分∮xy^2dy-x^2ydx的值(答案是πR^4/2)
下面是某网友的解答:
xy^2=Q(x)
-x^2ydx=P(x)
利用格林公式
∮xy^2dy-x^2ydx=二重积分(dQ/dx-dp/dy)dxdy=二重积分(x^2+y^2)dxdy=R^2二重积dxdy=R^2*πR^2/2
=πR^4/2 因为取得正向圆周,所以二重积dxdy=圆面积的一半.
我的问题是:为什么面积取一半?

因为取格林公式后,由线积分变成面积分,二重积分(x^2+y^2)dxdy,(x^2+y^2)不能用圆周方程
x^2+y^2=R^2替换,因为不在线上一重积分了,改为在圆面上二重积分了,应该用极坐标计算,r^2.rdr积分再乘以2pi.