求曲线积分fxy^2dy-x^2ydx其中L为圆周x^2+y^2=a^2的正方向 为什么我算出来是pai*a的4次.和答案不一样

问题描述:

求曲线积分fxy^2dy-x^2ydx其中L为圆周x^2+y^2=a^2的正方向 为什么我算出来是pai*a的4次.和答案不一样

P=-x^2y Q=xy^2
∂P/∂y=-x^2 ∂Q/∂x=y^2
根据格林公式:
∫(L)fxy^2dy-x^2ydx=∫∫(D)[y^2-(-x^2)]dxdy=∫(0,2π)dθ∫(0,a)r^3dr=πa^4/2