数列{an}中,a1=1,且an+1=Sn(n≥1,n∈N*),数列{bn}是等差数列,其公差d>0,b1=1,且b3、b7+2、3b9成等比数列. (Ⅰ)求数列{an}、{bn}的通项公式; (Ⅱ)设数列{cn}满足cn=anbn,求{c
问题描述:
数列{an}中,a1=1,且an+1=Sn(n≥1,n∈N*),数列{bn}是等差数列,其公差d>0,b1=1,且b3、b7+2、3b9成等比数列.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn=anbn,求{cn}的前n项和Tn.
答
(I)由已知有Sn+1-Sn=Sn,即Sn+1=2Sn(n∈N*),∴{Sn}是以S1=a1=1为首项,2为公比的等比数列.∴Sn=2n-1.由an=S1 (n=1)Sn−Sn−1&nbs...