过点C(1,-1)和D(3,1),圆心的y轴上的圆的方程为().请用带入圆的一般式或标准式做,我这还不怎么明白~
问题描述:
过点C(1,-1)和D(3,1),圆心的y轴上的圆的方程为().
请用带入圆的一般式或标准式做,我这还不怎么明白~
答
设x^2+(y+a)^2=r^2
将点C,D带入得a=-2 ; r^2=10
所以圆的方程为x^2+(y-2)^2=10
答
设圆心O(0,y)因为半径相等所以CO的距离等于DO的距离即|CO|=|DO|解得y=2所以圆心(0,2)半径r=|CO|=根号10 所以圆的方程为:X^2+(y-2)^2=10
答
kCD=(1+1)/(3-1)=1
CD中点为(2,0)
所以CD的中垂线方程为:y=-x+2
则圆心在y=-x+2上,又圆心在y轴上,
所以圆心为(0,2)
半径的方=(3-0)^2+(1-2)^2=10
x^2+(y-4)^2=10
说明:圆心在弦的中垂线上.
PS:这类题目有至少3种解法,灵活掌握.